Topology

B. Math. II

Mid-Term Examination

Instructions: All questions carry equal marks.

- 1. Let S_{Ω} be the minimal uncountable well-ordered set. Let X_0 be the subset consisting of all elements x such that x has no immediate predecessor. Prove that X_0 is uncountable.
- 2. Let \mathbb{R} denote the set of real numbers. Prove that the dictionary order topology on the set $\mathbb{R} \times \mathbb{R}$ is the same as the product topology $\mathbb{R}_d \times \mathbb{R}_{std}$, where \mathbb{R}_d denotes \mathbb{R} with discrete topology. Compare this topology with the standard topology on \mathbb{R}^2 .
- 3. Let Y be an ordered set. Let X be a topological space and let $f: X \to Y$ be a continuous map with respect to the ordered topology on Y. Prove that the map

$$h(x) = \min\{f(x), g(x)\}\$$

is a continuous map from X to Y.

- 4. Let $p: X \to Y$ be a quotient map such that $p^{-1}(y)$ is connected for every $y \in Y$. Prove that X is connected if and only if Y is connected.
- 5. Define linear continuum. If X is an ordered set in the order topology, prove that X is connected if and only if X is a linear continuum.
- 6. Prove that finite product of compact spaces is compact.